Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ufuk Çoruh, ${ }^{\text {a }}$ Tuncer Hökelek, ${ }^{\text {b }}{ }^{\text {* }}$ Ezequiel M. Vázquez-López, ${ }^{\text {c }}$ Abdullah Menzek, ${ }^{\text {d }}$ Cavit Kazaz ${ }^{\text {d }}$ and M. Emin Șengül ${ }^{\text {d }}$
${ }^{\text {a }}$ Ondokuz Mayıs University, Faculty of Art and Science, Department of Physics, 55139
Kurupelit, Samsun, Turkey, ${ }^{\text {b }}$ Hacettepe University, Department of Physics, 06532 Beytepe, Ankara, Turkey, ${ }^{\text {c }}$ Departamento de Química Inorgánica, Facultade de
Ciencias-Química, Universidade de Vigo, 36200-Vigo, Galicia, Spain, and ${ }^{\text {d Atatürk }}$ University, Faculty of Art and Sciences, Department of Chemistry, 25240, Erzurum, Turkey

Correspondence e-mail: merzifon@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.097$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

exo-(1RS,8SR,9RS,11SR)-10-Chloromethyltetracyclo[6.3.2.0 $\left.0^{2,7} 0^{9,11}\right]$ undecane-2,4,6,12-tetraene

The title compound, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Cl}$, consists of two central nonplanar six-membered carbon rings constituting a bicyclic system, having a benzene ring fused on one side and a $>\mathrm{CHCH}_{2} \mathrm{Cl}$ moiety, bridging the two C atoms of the bicyclic system, thereby forming a fused three-atom ring on the other side. The bicyclic system has approximate D_{3} symmetry and all three six-membered rings adopt boat conformations.

Comment

In general, organohalogen compounds are used extensively as solvents and insecticides, and as starting materials for the synthesis of other organic compunds. Treatment of alkyl halides with a strong base such as $\mathrm{KO}^{t} \mathrm{Bu}$ gives the corresponding alkenes (Fessenden \& Fessenden, 1993).

(4)
(5)

As shown in the scheme, chloride (2) was isolated from the reaction of alcohol (1) with thionyl chloride and reacted with $\mathrm{KO}^{t} \mathrm{Bu}$ to yield compound (5), a substituted product, instead of alkene (4) (Menzek, 2000). A similar reaction has been reported in the literature (Stampfli \& Nuenschwander, 1988). For the formation of the product with $\mathrm{O}^{t} \mathrm{Bu}$, the structure of chloride (2) is important.

The structures of [3.2.1]- and [2.2.2]-bicyclic systems having different substituents at different positions of the bicyclic framework have been the subject of much interest in our laboratory; examples are exo,endo,endo-9,9,10,11,12-pentabromotricyclo[6.2.2.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene [(II); Hökelek et al., 1990], exo,,exo-9,10,12-tribromotricyclo[6.3.1.0 ${ }^{2,7}$]-dodeca-2(7),3,5,10-tetraene [(III); Hökelek et al., 1991], exo,exo-2,4,8-tribromo-6,7-benzobicyclo[3.2.1]octa-2,6-diene, (IV), endo,exo-2,3,8-tribromo-6,7-benzobicyclo[3.2.1]octa-3,6-diene, (V), and exo,endo-2,5,6-tribromo-6,7-benzotri-cyclo[2.2.2]octa-2,6-diene, (VI) (Balcı et al., 1992), exo,anti-4-hydroxy-8-bromo-6,7-benzobicyclo[3.2.1]octa-2,6-diene, (VII), exo,anti-4,8-dibromo-2,3-benzobicyclo[3.2.1]octa-2,6-

Received 20 January 2004 Accepted 26 January 2004 Online 14 February 2004

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
diene, (VIII), and endo,endo-7,8-dibromo-5,6-benzobi-cyclo[2.2.2]octa-2,5-ene, (IX) (Daştan et al., 1994), exo,exo-2,3-endo,endo-5,6-tetrabromobicycloheptane [(X); Hökelek et al., 1998], and 2,2-exo-3,5,6-pentabromobicycloheptane [(XI); Hökelek et al., 2001].

The structure determination of the title compound, (2), was undertaken in order to verify the formation of the chloride.

The title compound, (2), contains two central non-planar six-membered carbon rings constituting a bicyclic system, which has a benzene ($\mathrm{C} 1-\mathrm{C} 6$) ring (A) on one side and a $>\mathrm{CHCH}_{2} \mathrm{Cl}$ moiety, bridging the two C atoms of the bicyclic system, thereby forming a fused three-membered ring on the other side (Fig. 1). As can be seen from the torsion angles (Table 1) and the puckering parameters (Cremer \& Pople, 1975), the bicyclic system has approximate D_{3} symmetry.

In the bicyclic fragment, all three six-membered rings adopt boat conformations: $Q_{T}=0.776(21) \AA, \varphi_{2}=-179.95(15)^{\circ}$ and $\theta_{2}=90.47(15)^{\circ}$ for the C7-C12 ring, $Q_{T}=0.772(2) \AA, \varphi_{2}=$ 119.14 (14) ${ }^{\circ}$ and $\theta_{2}=89.64$ (12) ${ }^{\circ}$ for the C1/C6-C10 ring, and $Q_{T}=0.889(2) \AA, \varphi_{2}=-59.69(13)^{\circ}$ and $\theta_{2}=89.25(13)^{\circ}$ for the $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 12 / \mathrm{C} 11 / \mathrm{C} 10$ ring.

Slight bond alternation is observed in ring A, with the distal aromatic bond $\mathrm{C} 3-\mathrm{C} 4[1.363(3) \AA]$ being about $0.03 \AA$ shorter than the proximal bond $\mathrm{C} 1-\mathrm{C} 6[1.394$ (2) \AA].

Bond angles about the central bicyclic system deviate substantially from ideal values. The exterior angles $\mathrm{C} 2-\mathrm{C} 1-$ C10 [126.9 (2) ${ }^{\circ}$] and C5-C6-C7 [127.3 (2) ${ }^{\circ}$] [average 127.1 (2) ${ }^{\circ}$] are larger than the interior angles $\mathrm{C} 13-\mathrm{C} 11-\mathrm{C} 10$ [122.5 (2) ${ }^{\circ}$] and $\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 7 \quad\left[123.5(2)^{\circ}\right] \quad$ [average $123.0(2)^{\circ}$]. The tetrahedral angles also exhibit significant distortion: $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12 \quad\left[103.5(2)^{\circ}\right]$ and $\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 11$ [102.9 (2) ${ }^{\circ}$] [average $\left.103.2(2)^{\circ}\right]$, and C6-C7-C8 [106.6 (2) ${ }^{\circ}$], $\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8 \quad\left[108.4(2)^{\circ}\right], \mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9 \quad\left[106.9(2)^{\circ}\right]$ and $\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$ [109.2 (2) ${ }^{\circ}$] [average $107.8(2)^{\circ}$]. The average values of the corresponding exterior and tetrahedral angles in similar [2.2.2]-bicyclic systems are 126.1 (5), 107.1 (4) and 107.9 (4) ${ }^{\circ}$ in (II), 126.6 (9), 108.5 (7) and 105.6 (7) ${ }^{\circ}$ in (VI), and 126.5 (6), 107.1 (5) and 106.5 (6) ${ }^{\circ}$ in (IX), respectively. The angles $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9 \quad\left[114.3(2)^{\circ}\right]$ and $\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$ [114.8 (2) $)^{\circ}$] about the double bond have an average value of $114.5(2)^{\circ}$. These results indicate the presence of significant

Figure 2
Packing diagram of (2).
strain in the bicyclic framework. The degree of strain is manifest most obviously in the deviations from ideality of the bond angles in the bicyclic ring system. However, the strain in the [3.2.1]-bicyclic system is more predominant than in the bicyclo[2.2.2]octane skeleton (Hökelek et al., 1991).

The dihedral angles between planes $A, B(\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 10), C$ (C7-C10), $D(\mathrm{C} 7 / \mathrm{C} 10-\mathrm{C} 12)$ and $E(\mathrm{C} 11-\mathrm{C} 13)$ are as follows: $A / B=1.73(7)^{\circ}, B / C=57.79(8)^{\circ}, B / D=65.22(9)^{\circ}, C / D=$ $56.99(10)^{\circ}$ and $D / E=62.71(11)^{\circ}$.

As can be seen from the packing diagram (Fig. 2), the molecules are elongated approximately parallel to the b axis and stacked along the a axis. Dipole-dipole and van der Waals interactions are effective in the molecular packing.

Experimental

$\mathrm{SOCl}_{2}(5 \mathrm{ml})$ was added in one portion to a stirred solution of alcohol (1) $(620 \mathrm{mg}, 3.37 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ at room temperature. Gas evolution was observed. After stirring for 3 h , the solvent and excess SOCl_{2} were removed by evaporation. The residue was subjected to column chromatography (silica gel, 45 g), eluting with hexane. The rearranged product (3) (yield $465 \mathrm{mg}, 64 \%$) and non-rearranged product (2) (yield $194 \mathrm{mg}, 27 \%$; m.p. $322-323 \mathrm{~K}$) were isolated. Recrystallization from hexane gave colourless crystals.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Cl}$
$D_{x}=1.278 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=216.69$
Monoclinic, $P 2_{1} / n$
$a=8.0400$ (8) \AA
$b=7.8514$ (7) \AA
$c=18.1877(16) \AA$
$\beta=101.133$ (2) ${ }^{\circ}$
$V=1126.50(18) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 2865 reflections
$\theta=2.3-28.0^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Irregular, colourless
$0.30 \times 0.25 \times 0.10 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: none
6442 measured reflections
2590 independent reflections
1441 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.037 \\
& \theta_{\max }=28.0^{\circ} \\
& h=-8 \rightarrow 10 \\
& k=-10 \rightarrow 10 \\
& l=-23 \rightarrow 19
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.098$
$S=0.85$
2590 reflections
172 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.047 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

C11-C14	$1.7935(19)$	C1-C2	$1.373(3)$
C12-C11	$1.493(2)$	C1-C10	$1.519(3)$
C12-C13	$1.509(2)$	C13-C14	$1.495(2)$
C12-C7	$1.552(2)$	C7-C8	$1.503(3)$
C6-C5	$1.379(2)$	C5-C $4.386(3)$	
C6-C1	$1.394(2)$	C10-C	$1.503(3)$
C6-C7	$1.518(2)$	C9-C8	$1.317(3)$
C11-C13	$1.499(2)$	C2-C3	$1.391(3)$
C11-C10	$1.549(2)$	C3-C4	$1.363(3)$
C11-C12-C13	$59.91(11)$	C14-C13-C12	$116.79(17)$
C11-C12-C7	$110.67(15)$	C11-C13-C12	$59.49(11)$
C13-C12-C7	$123.51(16)$	C8-C7-C6	$106.56(16)$
C5-C6-C7	$127.33(18)$	C8-C7-C12	$108.37(15)$
C1-C6-C7	$112.87(15)$	C6-C7-C12	$103.53(15)$
C12-C11-C13	$60.60(11)$	C9-C10-C1	$106.91(16)$
C12-C11-C10	$109.79(16)$	C9-C10-C11	$109.16(17)$
C13-C11-C10	$122.51(18)$	C1-C10-C11	$102.92(15)$
C2-C1-C10	$126.94(19)$	C13-C14-Cl1	$112.06(13)$
C6-C1-C10	$112.46(16)$	C8-C9-C10	$114.79(19)$
C14-C13-C11	$117.98(18)$	C9-C8-C7	$114.3(2)$
C7-C12-C11-C10	$0.7(2)$	C12-C11-C10-C9	$53.0(2)$
C7-C6-C1-C10	$-1.6(2)$	C12-C11-C10-C1	$-60.3(2)$
C1-C6-C7-C8	$54.7(2)$	C1-C10-C9-C8	$54.8(2)$
C1-C6-C7-C12	$-59.52(18)$	C11-C10-C9-C8	$-55.8(2)$
C11-C12-C7-C8	$-54.3(2)$	C10-C9-C8-C7	$-0.7(2)$
C11-C12-C7-C6	$58.57(18)$	C6-C7-C8-C9	$-54.3(2)$
C6-C1-C10-C9	$-52.3(2)$	C12-C7-C8-C9	$56.6(2)$
C6-C1-C10-C11	$62.7(2)$		

Most of the H atoms were located in a difference synthesis and refined isotropically $[\mathrm{C}-\mathrm{H}=0.94$ (2)-0.99 (2) \AA]. Atoms H3, H4, $\mathrm{H} 14 A$ and $\mathrm{H} 14 B$ were positioned geometrically at distances of 0.93 (CH) and $0.97 \AA\left(\mathrm{CH}_{2}\right)$ from the parent C atoms; a riding model was used for these during the refinement process. The $U_{\text {iso }}$ values were constrained to be 1.2 times $U_{\text {eq }}$ of the carrier atom.

Data collection: $S M A R T$ (Bruker, 1999); cell refinement: $S M A R T$; data reduction: SAINT (Bruker, 1999) and SHELXTL (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Balcı, M., Çakmak, O. \& Hökelek, T. (1992). Tetrahedron, 48, 3163-3182.
Bruker (1999). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Daştan, A., Balcı, M., Hökelek, T., Ülkü, D. \& Büyükgüngör, O. (1994). Tetrahedron, 50, 10555-10578.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fessenden, R. J. \& Fessenden, J. S. (1993). Organic Chemistry, 5th ed., pp. 181230. Pacific Grove, California: Brooks/Cole Publishing Company.

Hökelek, T., Çakmak, O. \& Balcı, M. (1990). Acta Cryst. C46, 1906-1908.
Hökelek, T., Çakmak, O. \& Balcı, M. (1991). Acta Cryst. C47, 1672-1675.
Hökelek, T., Çakmak, O. \& Tutar, A. (1998). J. Chem. Crystallogr. 28, 433-436.
Hökelek, T., Çelik, İ., Tutar, A. \& Çakmak, O. (2001). Acta Cryst. E57, o709o711.
Menzek, A. (2000). Tetrahedron, 56, 8505-8512.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stampfli, U. \& Nuenschwander, M. (1988). Helv. Chim. Acta, 71, 2022-2025.

